Power Measurement Basics

Agenda

Importance of Proper Signal Levels

- Too low
 - Signal buried in noise

• Too high

Nonlinear distortion can occur

Why Not Measure Voltage?

• DC

• Low Frequency

• High Frequency

Power: P = (I)(V)

Units and Definitions

- Unit of power is the watt (W): 1W = 1 joule/sec
- Some electrical units are derived from the watt:
 1 volt = 1 watt/ampere
- Relative power measurements are expressed in dB: $P(dB) = 10 \log(P/Pref)$
- Absolute power measurements are expressed in dBm: P(dBm) = 10 log(P/1 mW)

Types of Power Measurements

Instruments used to Measure RF and Microwave Power

- Vector Signal Analyzer
- Spectrum analyzer
- Network analyzer
- Power meter

Agenda

Average Power

CW Signal

Basic Measurement Method - Using a Power Meter

Basic Measurement Method Explained

Power Ranges of the Various Sensor Types

Thermistors

Thermocouple squarelaw region Extended range using an attenuator

Diode detector squarelaw region

Thermocouples

• The principles behind the thermocouple

Thermocouples

Diode Detectors

• How does a diode detector work?

Wide-Dynamic-Range CW-only Power Sensors

E-series E9300 Power Sensors Technology

Innovative Design:

- Diode stack- attenuatordiode stack topology
- Two paths with an automatic switch point

Advantages of the E-series E9300 sensor architecture

- Sensor diodes always kept in square law region.
- Accurate measurement of signals with high peak to average ratios.
- Accurate measurement of signals with arbitrarily wide modulation bandwidth.
- Flat calibration factors give accurate measurement of multitone signals.

Agenda

Peak Power Measurement

Peak Power Measurement

Agenda

Time Gated Power Measurements

Time Gated Power Measurements

Time Gated Power Measurements

Sources of Power Measurement Uncertainty

• Sensor and source mismatch errors

Calculation of Mismatch Uncertainty

$$SWR = 2.0 \qquad SWR = 1.22$$

$$r = 0.33 \qquad r = 0.10$$
SOURCE SENSOR

Mismatch Uncertainty = $\pm 2 \cdot r_{SOURCE} \cdot r_{SENSOR} \cdot 100\%$

Mismatch Uncertainty = $\pm 2 \cdot 0.33 \cdot 0.10 \cdot 100\% = \pm 6.6\%$

Power Sensor Uncertainties (Effective Efficiency)

Cal Factor:
$$K_b = \eta_e \frac{P_{gl}}{P_i}$$

Power Meter Instrumentation Uncertainties

Zero Carryover

Drift

Zero Set

Noise

Instrumentation uncertainty

Calculating Power Measurement Uncertainty

Mismatch uncertainty:

 $\pm 6.6\%$

Cal factor uncertainty:

 $\pm 3.1\%$

Power reference uncertainty:

 $\pm 1.2\%$

Instrumentation uncertainty:

 $\pm 0.5\%$

Now that the uncertainties have been determined, how are they combined?

Worst-Case Uncertainty

• In our example worst case uncertainty would be:

$$= 6.6\% + 3.1\% + 1.2\% + 0.5\% = \pm 11.4\%$$

$$+11.4\% = 10 \log (1 + 0.114) = +0.47 \text{ dB}$$

$$-11.4\% = 10 \log (1 - 0.114) = -0.53 \text{ dB}$$

RSS Uncertainty

• In our example RSS uncertainty would be:

$$= \sqrt{(6.6\%)^2 + (3.1\%)^2 + (1.2\%)^2 + (0.5\%)^2}$$

$$= \pm 7.4\%$$

$$+7.4\% = 10 \log (1 + 0.074) = +0.31 \text{ dB}$$

$$-7.4\% = 10 \log (1 - 0.074) = -0.33 \text{ dB}$$

Agenda

Thermistors as Transfer Standards

SWR (Reflection Coefficient)

Susceptibility to Overload

	8478B Thermistor Sensor	8481A Thermocouple Sensor	8481H Thermocouple Sensor	8481D Diode Sensor	E4412A Wide Dynamic Range Diode Sensor	E9300A Wide Dynamic Range Diode Sensor
Maximum Average Power	30 mW	300 mW	3.5 W	100 mW	200 mW	315 mW
Maximum Energy per Pulse	10 W·μs	30 W ·μs	100 W·μs	(1)	(1)	(1)
Peak Envelope Power	200 W	15 W	100 W	100 mW	200 mW	2W

⁽¹⁾ Diode device response is so fast, device cannot average out high-energy pulses

Agenda

Thermistors

Characteristic curves of a typical thermistor element

Thermistors

A self-balancing bridge containing a thermistor

Power Meters for Thermistor Mounts

• 432A Power Meter

Agenda

Agilent Power Sensor Selection Guide - 8480 Series

Agilent Power Sensor Selection Guide E-Series Wide Dynamic Range Sensors

